
JPEG-Codec-IP-Core (Encoder) für FPGAs

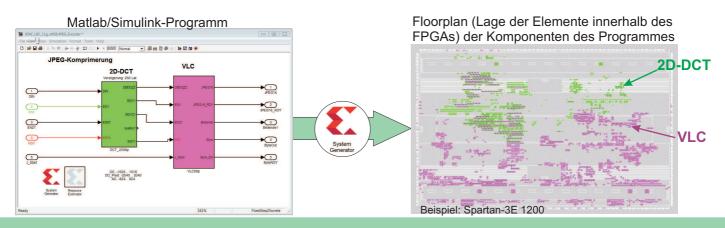
Anwendungen

- Digitalkameras und -camcorder
- Überwachungssysteme und -kameras
- ➤ Videokonferenzsysteme, smart cameras
- low-latency Kameras (geringste Verzögerungen)

- JPEG-Kompression/Dekompression entsprechend "baseline process" nach CCITT T.81 (ISO/IEC 10918-1).
- Der JPEG-Codec besteht aus einem separaten Encoder- und Decoderteil, die einzeln oder parallel betrieben werden können. Hohe Leistungsfähigkeit und Robustheit im praktischen Einsatz.
- Geringste Verzögerungszeiten zwischen Dateneingang und komprimierten Datenausgang (2...8 µs).
- Dieser high-performance Codec ist für Einzelbilder hoher Qualität und/oder Motion-JPEG (MJPEG) geeignet.
- Geringer Platzverbrauch bei hoher Geschwindigkeit in XILINX FPGAs (Spartan-6 < 1200 Slices).
- Qualität und Komprimierung mit 4 oder mehr vorgegebenen oder benutzerdefinierten Quantisierungstabellen wählbar. Datenmenge des komprimierten Bildes liegt zwischen 1 % und 33 % der Datenmenge des unkomprimierten Bildes.
- Voller Reset vor und nach jedem Bild, d.h. bei Motion-JPEG hat jedes Bild gleiche Anfangsbedingungen.
- Leichtes Einfügen in ein vorhandenes HDL-Programm bzw. Verbinden mit Programmmodulen durch definierte Schnittstellen.
- Programmierung des gesamten JPEG-Codecs wurde mit grafischer Oberfläche (Matlab/Simulink mit XILINX System Generator) als modularer Aufbau ausgeführt.
- Bildgröße kann beliebig sein (z.B. 64 k x 64 k).
- Optionale Module für Videokamerasteuerung, Bayer-Pattern-Interpolation, Farbraumkonvertierung, RAM-Anbindung usw. sind verfügbar. Individuelle Anpassung der IP-Cores möglich.
- Optional mit automatischer Komprimierungssteuerung für limitierten Datendurchsatz (Datenmenge des komprimierten Bildes wird der Bandbreite der Schnittstelle effektiv angepaßt).
- Core für XILINX FPGAs einsetzbar (Spartan-3-Familie, Spartan-6, Virtex-4, Virtex-5, Virtex-6, 7-er Familie Artix, Kintex, Virtex, ZYNQ).

Platzverbrauch und Geschwindigkeit

Der **JPEG-Encoder** (Kernkomponenten 2D-DCT und VLC) ist in den folgenden XILINX FPGAs mit dem Platzverbrauch nach Place & Route beispielhaft aufgelistet:


FPGA	Slice Reg	Slice LUTs	Belegte Slices	DSP48 oder Emb. Mult.	BlockRAM	BlockRAM /kbit
Spartan-3E	2234	3442	2769	1	5	80
Spartan-6	2240	2790	1192	1	3+2	56
Virtex-5	2199	2818	1173	1	1+3	80
Virtex-6	2205	2653	1098	1	1+3	80
Virtex-7	2201	2640	1142	1	1+3	80
Kintex-7	2184	2591	1080	1	1+3	80

Die möglichen maximalen Systemfrequenzen des Cores und die Verarbeitungsgeschwindigkeiten sind im Folgenden für FPGAs mit entsprechendem Speedgrade für den maximalen Systemtakt und maximalen Pixeltakt für den Encoder aufgelistet:

FPGA	Speedgrade	t _{max} /ns	f _{System max} /MHz	f _{Pixel max} /MHz (24 bit/Pixel)
Spartan-3E	4	8,3	120	60
Spartan-6	2	5,68	176	88
Spartan-6	3	4,81	208	104
Virtex-5	2	4,17	240	120
Virtex-6	2	3,12	320	160
Virtex-7	2	3,29	304	152
Kintex-7	2	3,67	272	136

Für hohe und höchste Qualitäten der komprimierten Bilder kann die Quantisierungstabelle und Geschwindigkeit angepaßt werden.

Unser Entwicklerteam steht auch für jede Anpassung und Hilfe bei diesem und anderen IP-Cores zur Verfügung.

Optionen

- Headergenerierung und Bildvorbereitung
- Bildzeilenspeicher intern/extern mit Pixelsortierung (YYUV)
- > zusätzliche FIFOs für komprimierte Bilddaten
- ➤ Entwicklungsdienstleistungen rund um FPGA-Funktionen und -Applikationen

Bestellinfos

JPEG-Enc-HQ JPEG-Encoder für Einzelbilder höchster Qualität

JPEG-Enc-Video JPEG-Encoder für Videostreams

JPEG-Enc-VV Vorverarbeitung der Bilddaten zum Encodereingang

